Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Immunol ; 211(10): 1526-1539, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819784

RESUMO

Chronic infection with the gammaherpesvirus EBV is a risk factor for several autoimmune diseases, and poor control of EBV viral load and enhanced anti-EBV responses elevate this risk further. However, the role of host genetic variation in the regulation of immune responses to chronic gammaherpesvirus infection and control of viral replication remains unclear. To address this question, we infected C57BL/6J (B6) and genetically divergent wild-derived inbred PWD/PhJ (PWD) mice with murine gammaherpesvirus-68 (MHV-68), a gammaherpesvirus similar to EBV, and determined the effect of latent gammaherpesvirus infection on the CD4 T cell transcriptome. Chronic MHV-68 infection of B6 mice resulted in a dramatic upregulation of genes characteristic of a cytotoxic Th cell phenotype, including Gzmb, Cx3cr1, Klrg1, and Nkg7, a response that was highly muted in PWD mice. Flow cytometric analyses revealed an expansion of CX3CR1+KLRG1+ cytotoxic Th cell-like cells in B6 but not PWD mice. Analysis of MHV-68 replication demonstrated that in spite of muted adaptive responses, PWD mice had superior control of viral load in lymphoid tissue, despite an absence of a defect in MHV-68 in vitro replication in PWD macrophages. Depletion of NK cells in PWD mice, but not B6 mice, resulted in elevated viral load, suggesting genotype-dependent NK cell involvement in MHV-68 control. Taken together, our findings demonstrate that host genetic variation can regulate control of gammaherpesvirus replication through disparate immunological mechanisms, resulting in divergent long-term immunological sequelae during chronic infection.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Animais , Camundongos , Infecção Persistente , Carga Viral , Camundongos Endogâmicos C57BL , Gammaherpesvirinae/genética , Imunidade , Variação Genética , Proteínas de Membrana/genética
2.
Commun Biol ; 6(1): 244, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879097

RESUMO

Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with P263-V313-L331 and L263-M313-S331, imparting sensitization and resistance respectively. Unexpectedly, we found several wild-derived inbred strains that carry the resistant HRH1 allotype (L263-M313-S331) but exhibit histamine sensitization. This suggests the existence of a locus modifying pertussis-dependent histamine sensitization. Congenic mapping identified the location of this modifier locus on mouse chromosome 6 within a functional linkage disequilibrium domain encoding multiple loci controlling sensitization to histamine. We utilized interval-specific single-nucleotide polymorphism (SNP) based association testing across laboratory and wild-derived inbred mouse strains and functional prioritization analyses to identify candidate genes for this modifier locus. Atg7, Plxnd1, Tmcc1, Mkrn2, Il17re, Pparg, Lhfpl4, Vgll4, Rho and Syn2 are candidate genes within this modifier locus, which we named Bphse, enhancer of Bordetella pertussis induced histamine sensitization. Taken together, these results identify, using the evolutionarily significant diversity of wild-derived inbred mice, additional genetic mechanisms controlling histamine sensitization.


Assuntos
Bordetella pertussis , Histamina , Animais , Camundongos , Bordetella pertussis/genética , Toxina Pertussis , Transdução de Sinais , Proteínas do Sistema Complemento , Loci Gênicos , Glicoproteínas de Membrana , Peptídeos e Proteínas de Sinalização Intracelular , Ribonucleoproteínas
3.
PLoS One ; 17(9): e0273050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112601

RESUMO

Infection with the respiratory pathogen influenza A virus (IAV) causes significant morbidity and mortality each year. While host genotype is thought to contribute to severity of disease, naturally occurring genetic determinants remain mostly unknown. Moreover, more severe disease is seen in women compared with men, but genetic mechanisms underlying this sex difference remain obscure. Here, using IAV infection in a mouse model of naturally selected genetic diversity, namely C57BL6/J (B6) mice carrying chromosomes (Chr) derived from the wild-derived and genetically divergent PWD/PhJ (PWD) mouse strain (B6.ChrPWD consomic mice), we examined the effects of genotype and sex on severity of IAV-induced disease. Compared with B6, parental PWD mice were completely protected from IAV-induced disease, a phenotype that was fully recapitulated in the B6.Chr16PWD strain carrying the PWD-derived allele of Mx1. In contrast, several other consomic strains, including B6.Chr3PWD and B6.Chr5PWD, demonstrated greatly increased susceptibility. Notably, B6.Chr5PWD and B6.ChrX.3PWD strains, the latter carrying the distal one-third of ChrX from PWD, exhibited increased morbidity and mortality specifically in male but not female mice. Follow up analyses focused on B6 and B6.ChrX.3PWD strains demonstrated moderately elevated viral load in B6.ChrX3PWD male, but not female mice. Transcriptional profiling demonstrated genotype- and sex-specific gene expression profiles in the infected lung, with male B6.ChrX.3 mice exhibiting the most significant changes, including upregulation of a proinflammatory gene expression program associated with myeloid cells, and altered sex-biased expression of several X-linked genes that represent positional candidates, including Tlr13 and Slc25a53. Taken together, our results identify novel loci on autosomes and the X chromosome regulating IAV susceptibility and demonstrate that sex differences in IAV susceptibility are genotype-dependent, suggesting that future genetic association studies need to consider sex as a covariate.


Assuntos
Vírus da Influenza A , Influenza Humana , Caracteres Sexuais , Animais , Feminino , Genótipo , Humanos , Influenza Humana/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cromossomo X
4.
PLoS Pathog ; 18(3): e1010365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324997

RESUMO

Type I interferon (IFN) has been identified in patients with Lyme disease, and its abundant expression in joint tissues of C3H mice precedes development of Lyme arthritis. Forward genetics using C3H mice with severe Lyme arthritis and C57BL/6 (B6) mice with mild Lyme arthritis identified the Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1) on chromosome 4 (Chr4) as a regulator of B. burgdorferi-induced IFNß expression and Lyme arthritis severity. B6 mice introgressed with the C3H allele for Bbaa1 (B6.C3-Bbaa1 mice) displayed increased severity of arthritis, which is initiated by myeloid lineage cells in joints. Using advanced congenic lines, the physical size of the Bbaa1 interval has been reduced to 2 Mbp, allowing for identification of potential genetic regulators. Small interfering RNA (siRNA)-mediated silencing identified Cdkn2a as the gene responsible for Bbaa1 allele-regulated induction of IFNß and IFN-stimulated genes (ISGs) in bone marrow-derived macrophages (BMDMs). The Cdkn2a-encoded p19 alternative reading frame (p19ARF) protein regulates IFNß induction in BMDMs as shown by siRNA silencing and overexpression of ARF. In vivo studies demonstrated that p19ARF contributes to joint-specific induction of IFNß and arthritis severity in B. burgdorferi-infected mice. p19ARF regulates B. burgdorferi-induced IFNß in BMDMs by stabilizing the tumor suppressor p53 and sequestering the transcriptional repressor BCL6. Our findings link p19ARF regulation of p53 and BCL6 to the severity of IFNß-induced Lyme arthritis in vivo and indicate potential novel roles for p19ARF, p53, and BCL6 in Lyme disease and other IFN hyperproduction syndromes.


Assuntos
Artrite , Inibidor p16 de Quinase Dependente de Ciclina , Doença de Lyme , Animais , Artrite/genética , Borrelia burgdorferi , Inibidor p16 de Quinase Dependente de Ciclina/genética , Genes p16 , Interferon beta/genética , Interferon beta/metabolismo , Doença de Lyme/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Fases de Leitura , Proteína Supressora de Tumor p53/genética
5.
Proc Natl Acad Sci U S A ; 117(44): 27516-27527, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077601

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. The etiology of MS is multifactorial, with disease risk determined by genetics and environmental factors. An emerging risk factor for immune-mediated diseases is an imbalance in the gut microbiome. However, the identity of gut microbes associated with disease risk, their mechanisms of action, and the interactions with host genetics remain obscure. To address these questions, we utilized the principal autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), together with a genetically diverse mouse model representing 29 unique host genotypes, interrogated by microbiome sequencing and targeted microbiome manipulation. We identified specific gut bacteria and their metabolic functions associated with EAE susceptibility, implicating short-chain fatty acid metabolism as a key element conserved across multiple host genotypes. In parallel, we used a reductionist approach focused on two of the most disparate phenotypes identified in our screen. Manipulation of the gut microbiome by transplantation and cohousing demonstrated that transfer of these microbiomes into genetically identical hosts was sufficient to modulate EAE susceptibility and systemic metabolite profiles. Parallel bioinformatic approaches identified Lactobacillus reuteri as a commensal species unexpectedly associated with exacerbation of EAE in a genetically susceptible host, which was functionally confirmed by bacterial isolation and commensal colonization studies. These results reveal complex interactions between host genetics and gut microbiota modulating susceptibility to CNS autoimmunity, providing insights into microbiome-directed strategies aimed at lowering the risk for autoimmune disease and underscoring the need to consider host genetics and baseline gut microbiome composition.


Assuntos
Encefalomielite Autoimune Experimental/genética , Microbioma Gastrointestinal/imunologia , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos/imunologia , Esclerose Múltipla/genética , Animais , Autoimunidade/genética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/microbiologia , Feminino , Variação Genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Limosilactobacillus reuteri/imunologia , Masculino , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia
6.
Genes Immun ; 21(5): 311-325, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32848229

RESUMO

Inflammatory bowel disease (IBD) is a complex disorder that imposes a growing health burden. Multiple genetic associations have been identified in IBD, but the mechanisms underlying many of these associations are poorly understood. Animal models are needed to bridge this gap, but conventional laboratory mouse strains lack the genetic diversity of human populations. To more accurately model human genetic diversity, we utilized a panel of chromosome (Chr) substitution strains, carrying chromosomes from the wild-derived and genetically divergent PWD/PhJ (PWD) strain on the commonly used C57BL/6J (B6) background, as well as their parental B6 and PWD strains. Two models of IBD were used, TNBS- and DSS-induced colitis. Compared with B6 mice, PWD mice were highly susceptible to TNBS-induced colitis, but resistant to DSS-induced colitis. Using consomic mice, we identified several PWD-derived loci that exhibited profound effects on IBD susceptibility. The most pronounced of these were loci on Chr1 and Chr2, which yielded high susceptibility in both IBD models, each acting at distinct phases of the disease. Leveraging transcriptomic data from B6 and PWD immune cells, together with a machine learning approach incorporating human IBD genetic associations, we identified lead candidate genes, including Itga4, Pip4k2a, Lcn10, Lgmn, and Gpr65.


Assuntos
Colite Ulcerativa/genética , Loci Gênicos , Predisposição Genética para Doença , Animais , Colite Ulcerativa/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo Genético , Transcriptoma
9.
Commun Biol ; 2: 398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31701027

RESUMO

The systemic capillary leak syndrome (SCLS, Clarkson disease) is a disorder of unknown etiology characterized by recurrent episodes of vascular leakage of proteins and fluids into peripheral tissues, resulting in whole-body edema and hypotensive shock. The pathologic mechanisms and genetic basis for SCLS remain elusive. Here we identify an inbred mouse strain, SJL, which recapitulates cardinal features of SCLS, including susceptibility to histamine- and infection-triggered vascular leak. We named this trait "Histamine hypersensitivity" (Hhs/Hhs) and mapped it to Chromosome 6. Hhs is syntenic to the genomic locus most strongly associated with SCLS in humans (3p25.3), revealing that the predisposition to develop vascular hyperpermeability has a strong genetic component conserved between humans and mice and providing a naturally occurring animal model for SCLS. Genetic analysis of Hhs may reveal orthologous candidate genes that contribute not only to SCLS, but also to normal and dysregulated mechanisms underlying vascular barrier function more generally.


Assuntos
Síndrome de Vazamento Capilar/genética , Animais , Síndrome de Vazamento Capilar/etiologia , Síndrome de Vazamento Capilar/fisiopatologia , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Histamina/fisiologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos , Infecções por Orthomyxoviridae/complicações , Pele/irrigação sanguínea , Especificidade da Espécie , Sintenia
10.
G3 (Bethesda) ; 9(12): 4223-4233, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31645420

RESUMO

Genetic mapping is a primary tool of genetics in model organisms; however, many quantitative trait loci (QTL) contain tens or hundreds of positional candidate genes. Prioritizing these genes for validation is often ad hoc and biased by previous findings. Here we present a technique for prioritizing positional candidates based on computationally inferred gene function. Our method uses machine learning with functional genomic networks, whose links encode functional associations among genes, to identify network-based signatures of functional association to a trait of interest. We demonstrate the method by functionally ranking positional candidates in a large locus on mouse Chr 6 (45.9 Mb to 127.8 Mb) associated with histamine hypersensitivity (Histh). Histh is characterized by systemic vascular leakage and edema in response to histamine challenge, which can lead to multiple organ failure and death. Although Histh risk is strongly influenced by genetics, little is known about its underlying molecular or genetic causes, due to genetic and physiological complexity of the trait. To dissect this complexity, we ranked genes in the Histh locus by predicting functional association with multiple Histh-related processes. We integrated these predictions with new single nucleotide polymorphism (SNP) association data derived from a survey of 23 inbred mouse strains and congenic mapping data. The top-ranked genes included Cxcl12, Ret, Cacna1c, and Cntn3, all of which had strong functional associations and were proximal to SNPs segregating with Histh. These results demonstrate the power of network-based computational methods to nominate highly plausible quantitative trait genes even in challenging cases involving large QTL and extreme trait complexity.


Assuntos
Mapeamento Cromossômico , Histamina/genética , Hipersensibilidade/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Camundongos
11.
Front Immunol ; 9: 1622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065723

RESUMO

Vitamin D3 (VitD) insufficiency is postulated to represent a major modifiable risk factor for multiple sclerosis (MS). While low VitD levels strongly correlate with higher MS risk in white populations, this is not the case for other ethnic groups, suggesting the existence of a genetic component. Moreover, VitD supplementation studies in MS so far have not shown a consistent benefit. We sought to determine whether direct manipulation of VitD levels modulates central nervous system autoimmune disease in a sex-by-genotype-dependent manner. To this end, we used a dietary model of VitD modulation, together with the autoimmune animal model of MS, experimental autoimmune encephalomyelitis (EAE). To assess the impact of genotype-by-VitD interactions on EAE susceptibility, we utilized a chromosome substitution (consomic) mouse model that incorporates the genetic diversity of wild-derived PWD/PhJ mice. High VitD was protective in EAE in female, but not male C57BL/6J (B6) mice, and had no effect in EAE-resistant PWD/PhJ (PWD) mice. EAE protection was accompanied by sex- and genotype-specific suppression of proinflammatory transcriptional programs in CD4 T effector cells, but not CD4 regulatory T cells. Decreased expression of proinflammatory genes was observed with high VitD in female CD4 T effector cells, specifically implicating a key role of MHC class II genes, interferon gamma, and Th1 cell-mediated neuroinflammation. In consomic strains, effects of VitD on EAE were also sex- and genotype dependent, whereby high VitD: (1) was protective, (2) had no effect, and (3) unexpectedly had disease-exacerbating effects. Systemic levels of 25(OH)D differed across consomic strains, with higher levels associated with EAE protection only in females. Analysis of expression of key known VitD metabolism genes between B6 and PWD mice revealed that their expression is genetically determined and sex specific and implicated Cyp27b1 and Vdr as candidate genes responsible for differential EAE responses to VitD modulation. Taken together, our results support the observation that the association between VitD status and MS susceptibility is genotype dependent and suggest that the outcome of VitD status in MS is determined by gene-by-sex interactions.

12.
J Immunol ; 199(10): 3525-3534, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986440

RESUMO

Previously, using a forward genetic approach, we identified differential expression of type I IFN as a positional candidate for an expression quantitative trait locus underlying Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1). In this study, we show that mAb blockade revealed a unique role for IFN-ß in Lyme arthritis development in B6.C3-Bbaa1 mice. Genetic control of IFN-ß expression was also identified in bone marrow-derived macrophages stimulated with B. burgdorferi, and it was responsible for feed-forward amplification of IFN-stimulated genes. Reciprocal radiation chimeras between B6.C3-Bbaa1 and C57BL/6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and confirmed the contribution of type I IFN genes to Lyme arthritis. RNA sequencing of resident CD45- joint cells from advanced interval-specific recombinant congenic lines identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development, and myostatin expression was linked to IFN-ß production. Inhibition of myostatin in vivo suppressed Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of the joint-specific inflammatory response to B. burgdorferi.


Assuntos
Borrelia burgdorferi/imunologia , Inflamação/imunologia , Interferon beta/metabolismo , Doença de Lyme/imunologia , Macrófagos/imunologia , Miostatina/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Loci Gênicos/genética , Inflamação/genética , Doença de Lyme/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Miostatina/genética , Quimera por Radiação , Regulação para Cima
13.
J Leukoc Biol ; 102(5): 1219-1227, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28877953

RESUMO

The p38 MAPK pathway was originally identified as a master regulator of proinflammatory cytokine production by myeloid cells. Numerous drugs targeting this kinase showed promise in preclinical models of inflammatory disease, but so far, none have shown efficacy in clinical trials. The reasons behind this are unclear, but may, in part, be explained by emerging anti-inflammatory functions of this kinase or overly refined selectivity of second-generation pharmacologic inhibitors. Here, we show that p38α signaling in macrophages plays pro- and anti-inflammatory functions in vivo and in vitro, with the outcome depending on the stimulus, output, kinetics, or mode of kinase inhibition (genetic vs. pharmacologic). Different pharmacologic inhibitors of p38 exhibit opposing effects, with second-generation inhibitors acting more specifically but inhibiting anti-inflammatory functions. Functionally, we show that the anti-inflammatory functions of p38α in macrophages are critically dependent on production of IL-10. Accordingly, in the absence of IL-10, inhibition of p38α signaling in macrophages is protective in a spontaneous model of colitis. Taken together, our results shed light on the limited clinical efficacy of drugs targeting p38 and suggest that their therapeutic efficacy can be significantly enhanced by simultaneous modulation of p38-dependent anti-inflammatory mediators, such as IL-10.


Assuntos
Colite/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Anti-Inflamatórios/farmacologia , Colite/genética , Colite/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Fatores Imunológicos/farmacologia , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
FASEB J ; 31(6): 2709-2719, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292961

RESUMO

Month-season of birth (M-SOB) is a risk factor in multiple chronic diseases, including multiple sclerosis (MS), where the lowest and greatest risk of developing MS coincide with the lowest and highest birth rates, respectively. To determine whether M-SOB effects in such chronic diseases as MS can be experimentally modeled, we examined the effect of M-SOB on susceptibility of C57BL/6J mice to experimental autoimmune encephalomyelitis (EAE). As in MS, mice that were born during the M-SOB with the lowest birth rate were less susceptible to EAE than mice born during the M-SOB with the highest birth rate. We also show that the M-SOB effect on EAE susceptibility is associated with differential production of multiple cytokines/chemokines by neuroantigen-specific T cells that are known to play a role in EAE pathogenesis. Taken together, these results support the existence of an M-SOB effect that may reflect seasonally dependent developmental differences in adaptive immune responses to self-antigens independent of external stimuli, including exposure to sunlight and vitamin D. Moreover, our documentation of an M-SOB effect on EAE susceptibility in mice allows for modeling and detailed analysis of mechanisms that underlie the M-SOB effect in not only MS but in numerous other diseases in which M-SOB impacts susceptibility.-Reynolds, J. D., Case, L. K., Krementsov, D. N., Raza, A., Bartiss, R., Teuscher, C. Modeling month-season of birth as a risk factor in mouse models of chronic disease: from multiple sclerosis to autoimmune encephalomyelitis.


Assuntos
Suscetibilidade a Doenças , Encefalite , Doença de Hashimoto , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito/toxicidade , Animais , Coeficiente de Natalidade , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Doença de Hashimoto/induzido quimicamente , Camundongos , Camundongos Endogâmicos , Esclerose Múltipla/etiologia , Fragmentos de Peptídeos/toxicidade , Estudos Retrospectivos , Fatores de Risco , Estações do Ano
15.
Proc Natl Acad Sci U S A ; 114(13): 3491-3496, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28242695

RESUMO

Males of many species, ranging from humans to insects, are more susceptible than females to parasitic, fungal, bacterial, and viral infections. One mechanism that has been proposed to account for this difference is the immunocompetence handicap model, which posits that the greater infectious disease burden in males is due to testosterone, which drives the development of secondary male sex characteristics at the expense of suppressing immunity. However, emerging data suggest that cell-intrinsic (chromosome X and Y) sex-specific factors also may contribute to the sex differences in infectious disease burden. Using a murine model of influenza A virus (IAV) infection and a panel of chromosome Y (ChrY) consomic strains on the C57BL/6J background, we present data showing that genetic variation in ChrY influences IAV pathogenesis in males. Specific ChrY variants increase susceptibility to IAV in males and augment pathogenic immune responses in the lung, including activation of proinflammatory IL-17-producing γδ T cells, without affecting viral replication. In addition, susceptibility to IAV segregates independent of copy number variation in multicopy ChrY gene families that influence susceptibility to other immunopathological phenotypes, including survival after infection with coxsackievirus B3. These results demonstrate a critical role for genetic variation in ChrY in regulating susceptibility to infectious disease.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/genética , Cromossomo Y/genética , Animais , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/imunologia , Influenza Humana/virologia , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fatores Sexuais , Linfócitos T/imunologia , Virulência
16.
Vaccine ; 35(9): 1259-1265, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161423

RESUMO

PURPOSE: Our research is focused on using vaccine draining lymph nodes as a source of immune cells to better understand the immune response and to attempt to generate new anti-cancer reagents. Following a vaccine, harvesting the lymph node can only be done once. We endeavored to determine the range of times that B cells secreting anti-KLH antibodies were present in the node of KLH-vaccinated mice. RESULTS: Following vaccination the total number of mononuclear cells (MNCs) increased in the vaccine-draining lymph node (VDN). The percentage of MNCs that were B cells nearly doubled. B cells recovered from the node that secreted anti-KLH antibodies were evident by day 7. The number continued to increase and then slowly decreased over the observed time range to 28days after vaccination. The VDN, compared to the spleen, the bone marrow and the nonVDN, contained a higher percentage of B cells that secreted anti-KLH antibodies. CONCLUSIONS: After a vaccine, there is a multi-week window of time when an increasing number of B cells are present in a VDN that secrete anti-KLH antibodies. These results support using the VDN as a source for B cells that secrete anti-vaccine antibodies.


Assuntos
Linfócitos B/imunologia , Hemocianinas/imunologia , Linfonodos/citologia , Vacinas/imunologia , Adjuvantes Imunológicos , Animais , Formação de Anticorpos , Células Produtoras de Anticorpos , Hemocianinas/administração & dosagem , Linfonodos/imunologia , Ativação Linfocitária , Camundongos , Baço/imunologia , Fatores de Tempo , Vacinas/administração & dosagem
17.
Sci Rep ; 6: 33841, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653046

RESUMO

Sepsis is characterized by systemic inflammation, edema formation and hypo-perfusion leading to organ dysfunction and ultimately death. Activation of the transient receptor potential vanilloid type 4 (TRPV4) channel is associated with edema formation and circulatory collapse. Here, we show that TRPV4 channels are involved in the hyper-inflammatory response and mortality associated with sepsis. Pharmacological inhibition of TRPV4 channels in mice reduced mortality in lipopolysaccharide and cecal-ligation-and-puncture models of sepsis, but not in a tumor necrosis factor-α (TNFα)-induced sepsis model. These protective effects of TRPV4 channel inhibition were attributable to prevention of the sepsis-induced surge of a broad spectrum of pro-inflammatory cytokines, including TNFα, interleukin (IL)-1 and IL-6, and subsequent preservation of endothelial cell function, including Ca2+ signaling, integrity and endothelium-dependent vasodilation. These results suggest that TRPV4 antagonists may be of therapeutic utility in the management of sepsis.

18.
Elife ; 52016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671734

RESUMO

Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination.

19.
Nat Commun ; 7: 10553, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822034

RESUMO

Variable, diversity and joining (V(D)J) recombination and immunoglobulin class switch recombination (CSR) are key processes in adaptive immune responses that naturally generate DNA double-strand breaks (DSBs) and trigger a DNA repair response. It is unclear whether this response is associated with distinct survival signals that protect T and B cells. Glycogen synthase kinase 3ß (GSK3ß) is a constitutively active kinase known to promote cell death. Here we show that phosphorylation of GSK3ß on Ser(389) by p38 MAPK (mitogen-activated protein kinase) is induced selectively by DSBs through ATM (ataxia telangiectasia mutated) as a unique mechanism to attenuate the activity of nuclear GSK3ß and promote survival of cells undergoing DSBs. Inability to inactivate GSK3ß through Ser(389) phosphorylation in Ser(389)Ala knockin mice causes a decrease in the fitness of cells undergoing V(D)J recombination and CSR. Preselection-Tcrß repertoire is impaired and antigen-specific IgG antibody responses following immunization are blunted in Ser(389)GSK3ß knockin mice. Thus, GSK3ß emerges as an important modulator of the adaptive immune response.


Assuntos
Quebras de DNA de Cadeia Dupla , Regulação Enzimológica da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Linfócitos/fisiologia , Animais , Células Cultivadas , Reparo do DNA , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Mutação , Fosforilação
20.
J Immunol ; 195(4): 1647-56, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26170381

RESUMO

The lysosomal enzyme ß-glucuronidase (Gusb) is a key regulator of Lyme-associated and K/B×N-induced arthritis severity. The luminal enzymes present in lysosomes provide essential catabolic functions for the homeostatic degradation of a variety of macromolecules. In addition to this essential catabolic function, lysosomes play important roles in the inflammatory response following infection. Secretory lysosomes and related vesicles can participate in the inflammatory response through fusion with the plasma membrane and release of bioactive contents into the extracellular milieu. In this study, we show that GUSB hypomorphism potentiates lysosomal exocytosis following inflammatory stimulation. This leads to elevated secretion of lysosomal contents, including glycosaminoglycans, lysosomal hydrolases, and matrix metalloproteinase 9, a known modulator of Lyme arthritis severity. This mechanistic insight led us to test the efficacy of rapamycin, a drug known to suppress lysosomal exocytosis. Both Lyme and K/B×N-associated arthritis were suppressed by this treatment concurrent with reduced lysosomal release.


Assuntos
Glucuronidase/metabolismo , Doença de Lyme/metabolismo , Lisossomos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Exocitose/efeitos dos fármacos , Exocitose/imunologia , Glucuronidase/deficiência , Glucuronidase/genética , Imunossupressores/farmacologia , Doença de Lyme/tratamento farmacológico , Doença de Lyme/genética , Doença de Lyme/patologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Camundongos Knockout , Modelos Biológicos , Transporte Proteico , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...